

Cálculo Diferencial e Integral I 1^o Teste

Campus da Alameda

9 de Abril de 2011, 13 horas

LEIC (Prova A)

Apresente todos os cálculos e justificações relevantes

1. Considere

$$A = \left\{ x \in \mathbb{R} : \frac{e^x(x-1)}{x^2 - 4} \ge 0 \right\}, \qquad B = \left\{ \ x \in \mathbb{R} : \ |x-1| \le 1 \right\}, \qquad C = B \setminus \ A.$$

a) Escreva cada um dos conjuntos B e C sob a forma de intervalo ou reunião de intervalos e mostre que $A = [-2, 1] \cup [2, +\infty[$.

Resolução:

Dado que $e^x > 0$, para todo o $x \in \mathbb{R}$ tem-se

$$\frac{e^x(x-1)}{x^2-4} \ge 0 \Leftrightarrow (x-1 \ge 0 \land x^2-4 > 0) \lor (x-1 \le 0 \land x^2-4 < 0)$$

$$\Leftrightarrow (x \geq 1 \land (x < -2 \lor x > 2)) \lor (x \leq 1 \land -2 < x < 2) \Leftrightarrow x \in]-2,1] \cup]2,+\infty[\,,$$

pelo que $A =]-2, 1] \cup]2, +\infty[.$

$$|x-1| \le 1 \Leftrightarrow -1 \le x-1 \le 1 \Leftrightarrow 0 \le x \le 2$$

e B = [0, 2]. Finalmente, C = [1, 2].

b) Determine, se existirem em \mathbb{R} , inf A, sup A, min C, inf $(A \cap B)$, máx $(B \setminus \mathbb{Q})$.

Resolução:

inf A = -2; A não é majorado, logo não existe sup A, não existe min C $(1 \notin C)$; inf $(A \cap B) = \inf [0, 1] = 0$; não existe máx $(B \setminus \mathbb{Q})(2 \notin B \setminus \mathbb{Q})$.

- c) Decida justificadamente se são verdadeiras ou falsas as seguintes afirmações:
 - (i) Toda a sucessão decrescente de termos em $A\cap\mathbb{R}^-$ é convergente. Resolução:

Verdadeira: $A \cap \mathbb{R}^-$ é um conjunto minorado e toda a sucessão decrescente e minorada é convergente.

(ii) Toda a sucessão de termos em B tem uma subsucessão convergente.

Resolução:

Verdadeira: B é um conjunto limitado e toda a sucessão limitada tem , pelo menos, um sublimite (Teorema de Bolzano- Weierstrass).

(iii) Toda a sucessão estritamente crescente de termos em B converge para 2.

Falsa: por exemplo, $a_n = 1 - \frac{1}{n}$ é sucessão crescente, de termos em B e tende para 1.

2. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$) os seguintes limites de sucessões:

$$\lim \frac{5^n - n!}{1 + 7^n}$$
, $\lim \left(1 - \frac{\pi}{n^2}\right)^{n^2 + 1}$, $\lim \sqrt[n]{\frac{1 + e^n}{n^2}}$

Resolução:

$$\lim \frac{5^n - n!}{1 + 7^n} = \lim \frac{\frac{5^n}{n!} - 1}{\frac{1}{n!} + \frac{7^n}{n!}} = -\infty$$

$$\lim \left(1 - \frac{\pi}{n^2}\right)^{n^2 + 1} = \lim \left(1 - \frac{\pi}{n^2}\right) \left(1 - \frac{\pi}{n^2}\right)^{n^2} = e^{-\pi}$$

Com $a_n = \frac{1+e^n}{n^2}$, consideremos

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{\frac{1+e^{n+1}}{(n+1)^2}}{\frac{1+e^n}{n}} = \lim \frac{\frac{1}{e^n} + e}{\frac{1}{e^n} + 1} \left(\frac{n}{n+1}\right)^2 = e$$

pelo que

$$\lim \sqrt[n]{\frac{1+e^n}{n^2}} = e.$$

3. Considere uma sucessão $(a_n)_{n\in\mathbb{N}}$ definida por

$$\begin{cases} a_1 = \pi, \\ a_{n+1} = \frac{\pi}{n+1} a_n, & \text{se } n \ge 1. \end{cases}$$

a) Use indução matemática para mostrar que $a_n > 0$, para todo o $n \in \mathbb{N}$ e conclua que

$$\forall_{n\geq 3} \quad \frac{a_{n+1}}{a_n} \leq 1$$

Resolução:

Se n = 1, tem-se $a_1 = \pi > 0$.

Supondo, por hipótese de indução, que $a_n > 0$ é imediato que $a_{n+1} = \frac{\pi}{n+1} a_n > 0$. Provámos pois que $a_n > 0$, para todo o $n \in \mathbb{N}$.

Então,

$$\frac{a_{n+1}}{a_n} = \frac{\pi}{n+1} \le \frac{\pi}{4} \le 1, \forall_{n \ge 3}.$$

b) Justifique que (a_n) é convergente e mostre que $\lim a_n = 0$.

Resolução:

Da alínea a), sabemos que

$$\forall_{n\geq 3} \quad \frac{a_{n+1}}{a_n} \leq 1 \Leftrightarrow a_{n+1} \leq a_n$$

e a_n é sucessão decrescente (a partir da ordem n=3); como é minorada, concluímos que a_n é convergente. Se $a=\lim a_n$,

$$a = \lim a_{n+1} = \lim \frac{\pi}{n+1} a_n = 0$$

c) Use indução matemática para mostrar que

$$\forall_{n \in \mathbb{N}} \quad a_n = \frac{\pi^n}{n!}$$

Resolução:

Se n = 1, tem-se $a_1 = \pi = \frac{\pi}{1!}$.

Por hipótese de indução, $a_n = \frac{\pi^n}{n!}$, logo

$$a_{n+1} = \frac{\pi}{n+1} a_n = \frac{\pi}{n+1} \frac{\pi^n}{n!} = \frac{\pi^{n+1}}{(n+1)!}.$$

Concluímos que o resultado é válido para todo o $n \in \mathbb{N}$.

4. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$) os seguintes limites

$$\lim_{x \to e} \frac{x(x-e)}{\operatorname{sen}(x-e)}, \qquad \lim_{x \to +\infty} \frac{x^2 \cos x^2 + 1}{2 - x^3}$$

Resolução:

Uma vez que $\lim_{x\to 0} \frac{x}{\sin x} = 1$,

$$\lim_{x \to e} \frac{x(x-e)}{\operatorname{sen}(x-e)} = \lim_{y \to 0} \frac{(y+e)y}{\operatorname{sen} y} = e.$$

Dado que $\lim_{x\to +\infty} \frac{\cos x^2}{x}=0$ (produto de um infinitésimo por uma função limitada),

$$\lim_{x \to +\infty} \frac{x^2 \cos x^2 + 1}{2 - x^3} = \lim_{x \to +\infty} \frac{\frac{\cos x^2}{x} + \frac{1}{x^3}}{\frac{2}{x^3} - 1} = 0.$$

5. Considere a função real de variável real f tal que

$$f(x) = \begin{cases} \arctan \frac{1}{x+1} & \text{se } x < -1\\ \arcsin x & \text{se } -1 < x \le 1\\ \log(x-1) & \text{se } x > 1 \end{cases}$$

a) Calcule (se existirem em \mathbb{R}) $\lim_{x\to-\infty} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to+\infty} f(x)$. Resolução:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \arctan \frac{1}{x+1} = 0.$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \arcsin x = \frac{\pi}{2}, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \log(x - 1) = -\infty,$$

logo, não existe limite de f no ponto x = 1.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log(x - 1) = +\infty$$

b) Estude f quanto a continuidade. Será f prolongável por continuidade ao ponto x=-1? Justifique.

Resolução:

f é contínua em $\mathbb{R}\setminus\{-1,1\}$: em $]-\infty,-1[$ é composta de uma função racional com a função arcotangente ; em]-1,1[, $f(x)=\arcsin x$ e em $]1,+\infty[$, f é composta de uma função polinomial com a função logaritmo.

como vimos, não existe limite de f no ponto x=1, pelo que f não é contínua no ponto 1. Finalmente,

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \arctan \frac{1}{x+1} = -\frac{\pi}{2}, \qquad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \arcsin x = -\frac{\pi}{2}$$

o que mostra que existe $\lim_{x\to -1} f(x)$ e f é prolongável por continuidade ao ponto x=-1.

- **6.** Seja $(b_n)_{n\in\mathbb{N}}$ o termo geral de uma sucessão de termos em \mathbb{R}^+ . Prove que:
 - a) Se $\lim \frac{b_{n+1}}{b_n}=\alpha<1$, então a sucessão (b_n) é convergente e $\lim b_n=0$. Resolução:

Da definição de limite de uma sucessão, tomando $\epsilon=1-\alpha>0,$

$$\exists_{p \in \mathbb{N}} \qquad \forall_{n \in \mathbb{N}} \qquad n > p \Rightarrow \frac{b_{n+1}}{b_n} < \alpha + \epsilon = 1$$

e como $b_n > 0$,

$$\exists_{p \in \mathbb{N}} \qquad \forall_{n \in \mathbb{N}} \qquad n > p \Rightarrow b_{n+1} < b_n$$

Então, $b_n > 0$ é sucessão decrescente (a partir de certa ordem) e é minorada, logo é convergente. Se $b = \lim b_n$, tem-se $b \ge 0$; se b > 0,

$$\lim \frac{b_{n+1}}{b_n} = \frac{b}{b} = 1 = \alpha < 1$$

o que é absurdo. Assim, b=0.

b) Se $\lim \frac{b_{n+1}}{b_n} = \alpha > 1$, então $\lim b_n = +\infty$. Resolução:

Tomando $a_n = \frac{1}{b_n} \ (n \in \mathbb{N})$, vem

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{b_n}{b_{n+1}} = \frac{1}{\alpha} < 1.$$

Da alínea a), concluímos que $\lim a_n = 0$ e porque $b_n > 0$, $\lim b_n = +\infty$.