Cálculo Diferencial e Integral I LEAmb, LEMat, MEB, MEEC, MEQ

1º teste - 17 de Novembro de 2007, 13:00

duração: 1:30

Apresente todos os cálculos e justificações relevantes

(6,5 vals.) I. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : \frac{x-1}{x+1} \le 1 \right\}, \qquad B = \left\{ x \in \mathbb{R} : \frac{(x-2)e^x}{|x|} \le 0 \right\}.$$

a) Mostre que $A \cap B =]-1,2] \setminus \{0\}.$

$$\frac{x-1}{x+1} \leq 1 \quad \Leftrightarrow \quad \frac{x-1}{x+1} - 1 \leq 0 \quad \Leftrightarrow \quad \frac{x-1-x-1}{x+1} \leq 0 \quad \Leftrightarrow \quad -\frac{2}{x+1} \leq 0,$$

o que é obviamente verdadeiro sse x+1>0, ou seja, se x>-1. Logo, $A=]-1,+\infty[$.

Como $e^x > 0$ e $|x| \ge 0$ para qualquer x, a desigualdade $\frac{(x-2)e^x}{|x|} \le 0$ é verdadeira sse

$$x-2 \le 0 \ \land \ |x| \ne 0$$
, ou seja, $x \le 2 \ \land \ x \ne 0$.

Logo, $B =]-\infty, 2] \setminus \{0\}.$

Dado que -1 < 0 < 2 concluimos que $A \cap B =]-1, 2] \setminus \{0\}$.

b) Indique (caso existam em \mathbb{R}),

$$\inf B$$
, $\sup B$, $\inf(A \cap B)$, $\sup(A \cap B)$, $\max(A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}))$,

inf
$$B$$
 não existe, $\sup B = 2$, $\inf(A \cap B) = -1$, $\sup(A \cap B) = 2$, $\max(A \cap B \cap (\mathbb{R} \setminus \mathbb{Q}))$ não existe.

- c) Diga, justificando, se cada uma das proposições seguintes é verdadeira ou falsa:
 - (i) Toda a sucessão de termos em $A \cap B$ tem subsucessões convergentes.

Verdadeira. O conjunto $A \cap B$ é limitado (minorado e majorado), logo qualquer sucessão de termos em $A \cap B$ é necessariamente limitada. O teorema de Bolzano-Weierstrass assegura-nos então que qualquer sucessão de termos em $A \cap B$ tem subsucessões convergentes.

(ii) Toda a sucessão de termos em $A \cap B$ estritamente decrescente converge para -1.

Falsa. Um contraexemplo é a sucessão de termo geral $\frac{1}{n}$. De facto, para cada $n, \frac{1}{n} \in A \cap B$, é estritamente decrescente e, no entanto, $\frac{1}{n} \to 0$.

(iii) Se x_n é uma sucessão de termos em $A \cap B$, então $\frac{x_n}{n}$ é convergente.

Verdadeira. Se, $x_n \in A \cap B$ então, $-1 < x_n \le 2$, e, portanto, $-\frac{1}{n} < \frac{x_n}{n} \le \frac{2}{n}$. Como $-\frac{1}{n} \to 0$ e $\frac{2}{n} \to 0$, pelo teorema das sucessões enquadradas concluimos que $\frac{x_n}{n} \to 0$.

(6,5 vals.) II. 1. Calcule (caso existam em $\widetilde{\mathbb{R}}$):

$$\lim \frac{2+e^n}{n+3^n}, \qquad \lim \left(1+\frac{1}{n\pi}\right)^{2n}, \qquad \lim \sqrt[n]{\frac{2+n}{n!}}\,.$$

$$\frac{2+e^n}{n+3^n} = \left(\frac{e}{3}\right)^n \frac{\frac{2}{e^n}+1}{\frac{n}{2n}+1} \to 0.\frac{0+1}{0+1} = 0.$$

Usou-se aqui o facto de 0 < e/3 < 1.

$$\left(1 + \frac{1}{n\pi}\right)^{2n} = \left(1 + \frac{2/\pi}{2n}\right)^{2n} \to e^{2/\pi}$$

Seja $u_n = \frac{2+n}{n!}$, para cada $n \in \mathbb{N}$. Então

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2+(n+1)}{(n+1)!}}{\frac{2+n}{n!}} = \frac{3+n}{2+n} \cdot \frac{1}{n+1} = \frac{3/n+1}{2/n+1} \cdot \frac{1}{n+1} \to 1 \cdot 0 = 0.$$

Desta forma, podemos concluir que

$$\sqrt[n]{\frac{2+n}{n!}} = \sqrt[n]{u_n} \to 0.$$

2. Calcule (caso existam em $\widetilde{\mathbb{R}}$):

$$\lim_{x \to +\infty} \frac{x+1}{\sqrt{x^3+1}}, \qquad \lim_{x \to 0^+} x^{\frac{1}{x}}, \qquad \lim_{x \to 0} \frac{1}{x} \operatorname{sen} \left(\frac{x}{x+1} \right).$$

$$\frac{x+1}{\sqrt{x^3+1}} = \frac{x(1+1/x)}{x^{3/2}\sqrt{1+1/x^3}} = \frac{1}{x^{1/2}} \frac{1+1/x}{\sqrt{1+1/x^3}}.$$

Logo,

$$\lim_{x \to +\infty} \frac{x+1}{\sqrt{x^3+1}} = \lim_{x \to +\infty} \frac{1}{x^{1/2}} \cdot \lim_{x \to +\infty} \frac{1+1/x}{\sqrt{1+1/x^3}} = 0.1 = 0.$$

$$\lim_{x \to 0^+} x^{\frac{1}{x}} = \lim_{x \to 0^+} e^{\frac{1}{x} \log x} = e^{(+\infty) \cdot (-\infty)} = e^{-\infty} = 0.$$

O terceiro limite, na forma em que está escrito, trata-se de um caso indeterminado do tipo $\frac{0}{0}$. Para resolver esta indeterminação usamos o limite $\lim_{u\to 0} \frac{\sin u}{u} = 1$:

$$\lim_{x\to 0} \frac{1}{x} \operatorname{sen}\left(\frac{x}{x+1}\right) = \lim_{x\to 0} \frac{1}{x} \cdot \frac{x}{x+1} \cdot \frac{\operatorname{sen}\left(\frac{x}{x+1}\right)}{\frac{x}{x+1}} = \lim_{x\to 0} \frac{1}{x+1} \cdot \lim_{x\to 0} \frac{\operatorname{sen}\left(\frac{x}{x+1}\right)}{\frac{x}{x+1}} = 1 \cdot 1 = 1.$$

(4 vals.) III. Seja f uma função real de variável real definida por

$$f(x) = \frac{|x-1|e^x}{x+1}.$$

a) Indique o domínio de f.

$$D(f) = \mathbb{R} \setminus \{-1\}.$$

b) Estude f quanto à continuidade.

A função dada pela expressão |x-1| é contínua em \mathbb{R} por ser a composta da função módulo com a função polinomial x-1, as quais são contínuas em \mathbb{R} . Como a função exponencial é contínua em \mathbb{R} , o produto $|x-1|e^x$ sendo um produto de funções contínuas em \mathbb{R} , é contínua em \mathbb{R} . Como f é dada pelo quociente entre esta função contínua e a função polinomial x+1, podemos concluir que f é contínua em todos os pontos em que $x+1 \neq 0$. Logo, f é contínua em D(f).

c) Calcule $\lim_{x \to -1^+} f(x)$ e $\lim_{x \to -1^-} f(x)$.

$$\lim_{x \to -1^+} \frac{|x-1|e^x}{x+1} = \lim_{x \to -1^+} |x-1|e^x \times \lim_{x \to -1^+} \frac{1}{1+x} = 2e^{-1} \times (+\infty) = +\infty.$$

$$\lim_{x \to -1^{-}} \frac{|x-1|e^{x}}{x+1} = \lim_{x \to -1^{-}} |x-1|e^{x} \times \lim_{x \to -1^{-}} \frac{1}{1+x} = 2e^{-1} \times (-\infty) = -\infty.$$

d) Será f uma função limitada? Justifique.

A função f não é limitada uma vez que não é majorada (na realidade também não é minorada). De facto, da alínea anterior e da definição de limite em \mathbb{R} , dado um real arbitrário, M digamos, existe um intervalo $]-1, \varepsilon[$ tal que para qualquer x neste intervalo f(x) > M. Isto significa que M não é um majorante de f. Logo f não é majorada.

(3 vals.) IV. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua em zero, tal que

$$\forall n \in \mathbb{N}_1 \quad f\left(\frac{1}{n}\right) = \frac{n+1}{n}.$$

a) Indique, justificando, o valor de f(0).

Por hipótese f é contínua em x=0 e portanto, para qualquer sucessão de termo geral u_n em \mathbb{R} tal que $u_n \to 0$, tem-se $f(u_n) \to f(0)$. Em particular, como $\frac{1}{n} \to 0$, resulta

$$f\left(\frac{1}{n}\right) \to f(0)$$
.

Por outro lado,

$$f\left(\frac{1}{n}\right) = \frac{n+1}{n} = 1 + \frac{1}{n} \to 1.$$

Logo, pela unicidade do limite de uma sucessão,

$$f(0) = 1.$$

b) Sendo $h(x) = \frac{x-1}{f(\sin x)}$, mostre que h está definida numa vizinhança de zero e indique, justificando, h(0).

A função h é dada pelo quociente entre duas funções definidas em todo \mathbb{R} . Assim, h(x) estará definida em cada ponto x que não seja um zero do denominador, ou seja, tal que $f(\operatorname{sen} x) \neq 0$. Por outro lado, a função seno é continua em \mathbb{R} e, por hipótese, f é contínua em $0 = \operatorname{sen} 0$. Logo, a composta de f com a função seno, $f(\operatorname{sen} x)$, é contínua em x = 0. Ora, uma consequência da continuidade de $f(\operatorname{sen} x)$ no ponto x = 0 é que, se f(0) > 0, então existe uma vizinhança $V_{\varepsilon}(0)$ tal que

$$\forall_{x \in V_{\varepsilon}(0)} \ f(\operatorname{sen} x) > 0.$$

Mas, da alínea a), já sabemos que f(sen 0) = f(0) = 1 > 0 e que, portanto, a conclusão anterior é válida, o que prova que h(x) está definida em cada $x \in V_{\varepsilon}(0)$.

c) Sendo $g(x)=xf\left(\frac{1}{x}\right)$, indique justificando os valores de

$$\lim_{x \to -\infty} g(x), \qquad \lim_{x \to +\infty} g(x).$$

Como, $\lim_{x\to +\infty} \frac{1}{x} = \lim_{x\to -\infty} \frac{1}{x} = 0$, e com o facto de f ser contínua em zero, podemos assegurar a existência dos limites $\lim_{x\to -\infty} f\left(\frac{1}{x}\right)$ e $\lim_{x\to +\infty} f\left(\frac{1}{x}\right)$ e que

$$\lim_{x\to -\infty} f\left(\frac{1}{x}\right) = \lim_{x\to +\infty} f\left(\frac{1}{x}\right) = \lim_{y\to 0} f(y) = f(0) = 1.$$

Assim, em $\widetilde{\mathbb{R}}$, os seguintes limites existem e satisfazem

$$\lim_{x\to -\infty} x f\left(\frac{1}{x}\right) = \lim_{x\to -\infty} x \times \lim_{x\to -\infty} f\left(\frac{1}{x}\right) = -\infty \times 1 = -\infty,$$

$$\lim_{x\to +\infty} x f\left(\frac{1}{x}\right) = \lim_{x\to +\infty} x \times \lim_{x\to +\infty} f\left(\frac{1}{x}\right) = +\infty \times 1 = +\infty,$$