Cálculo Diferencial e Integral I 2º Exame

Campus da Alameda

22 de Janeiro de 2007, 9 horas

Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia Geológica e Mineira, Engenharia de Materiais, Engenharia do Território, Engenharia Química, Química

Apresente todos os cálculos e justificações relevantes

(3,5) I. Considere

(3)

$$A = \{x \in \mathbb{R} : 1 - |x| = |x - 1|\}, \qquad B = \{x \in \mathbb{R} : \arctan(2x) \le \frac{\pi}{4}\}.$$

- a) Sendo $C = A \setminus B$, mostre que C = [1/2, 1].
- b) Determine, se existirem (em \mathbb{R}), os supremo, máximo, ínfimo e mínimo de cada um dos conjuntos C e $C \setminus \mathbb{Q}$.
- c) Decida quais das seguintes afirmações são verdadeiras e quais são falsas:
 - (i) Qualquer sucessão de termos em C é convergente.
 - (ii) Qualquer sucessão monótona de termos em C é convergente (em \mathbb{R}).
 - (iii) Qualquer sucessão decrescente de termos em C é convergente para um elemento de C.
- II. 1. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$) os seguintes limites de sucessões:

$$\lim \frac{n!+2}{3^n}$$
, $\lim \left(1+\frac{1}{2^n}\right)^{2^n}$, $\lim \operatorname{arctg}\left(\sqrt[n]{\frac{n-1}{n}}\right)$.

2. Calcule ou mostre que não existem (em \mathbb{R}) os seguintes limites:

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}, \qquad \lim_{x \to 0^+} (\sin x)^{x^2}.$$

(5) III. Seja $\alpha \in \mathbb{R}$. Define-se $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ através de

$$f(x) = \begin{cases} \arctan \frac{1}{x-1}, & \text{se } x < 1, \\ -\log x + \alpha, & \text{se } x > 1. \end{cases}$$

- a) Justifique que f é uma função contínua.
- b) Determine α de maneira a que f seja prolongável por continuidade ao ponto 1.
- c) Seja \tilde{f} o prolongamento por continuidade de f determinado na alínea anterior. Determine o seu domínio de diferenciabilidade e calcule a derivada \tilde{f}' .
- d) Mostre que \tilde{f} não possui pontos de extremo.
- e) Seja $\phi: \mathbb{R} \to \mathbb{R}$ diferenciável tal que $\phi(0) = 2$, $\phi'(0) = 3$. Calcule o valor de $(f \circ \phi)'(0)$.

IV. 1. Seja $g:[0,+\infty[\to\mathbb{R}]$ dada por

(6)

$$g(x) = \frac{\sin x}{x^2 + 1}.$$

- a) Justifique que g possui um ponto de máximo absoluto no intervalo $]0,\pi[$.
- b) Mostre que existe uma sucessão $(x_n)_{n\in\mathbb{N}_1}$ tal que $\lim x_n = +\infty$ e $g'(x_n) = 0$ para todo o $n\in\mathbb{N}_1$.
- 2. Determine uma primitiva de cada das seguintes funções:

a)
$$\frac{4e^x}{e^x + 4}$$
. b) $\frac{\log x}{x^2}$. c) $\frac{e^x}{e^{2x}}$

- 3. Calcule a área da região do plano limitada pelas parábolas de equação $x=y^2$ e $x^2=-y$.
- (2,5) V. Considere a função $\psi: \mathbb{R} \to \mathbb{R}$ dada por

$$\psi(x) = \int_0^{x^2} \operatorname{sen}(t^2) \, dt.$$

- a) Justifique que ψ é diferenciável em $\mathbb R$ e calcule a sua derivada.
- b) Determine os pontos de estacionaridade de ψ e classifique-os quanto a serem pontos de extremo e, na afirmativa, quanto a serem pontos de máximo ou mínimo. [Sugestão: no caso do ponto de estacionaridade em 0 use directamente a definição de ψ para determinar o seu sinal numa vizinhança de 0 de raio suficientemente pequeno.]