

## Cálculo Diferencial e Integral I

1º Teste (Versão A)

9 de Novembro de 2019

## LEIC-T, LEGI, LETI, LEE

## Apresente todos os cálculos e justificações relevantes

(5,0) I. Considere os seguintes subconjuntos de  $\mathbb{R}$ :

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 + 2x}{x^2 - 1} < 1 \right\}, \qquad B = \left\{ x \in \mathbb{R} : (|x - 1| - 2) \log x > 0 \right\}.$$

a) Identifique os conjuntos A e B e verifique que

$$B = [0, 1] \cup [3, +\infty[$$
.

- b) Indique, ou justifique que não existem, sup A, sup B, máx $(A \cap \mathbb{Z})$ , inf $(B \cap \mathbb{R}^+)$ , min $(A \cap B)$ .
- c) Decida justificadamente se são verdadeiras ou falsas as seguintes afirmações:
  - (i) Existe uma sucessão estritamente crescente de termos em B que é convergente.
  - (ii) Se  $(a_n)$  é uma sucessão de termos em B, a sucessão  $(a_n \operatorname{sen}(1/n))$  converge para 0.
  - (iii) Se  $f: B \to \mathbb{R}$  é uma função contínua, f(B) tem mínimo.
- (3,5) II. Considere a sucessão  $(a_n)$  definida por

$$\begin{cases} a_1 = 1/4, \\ a_{n+1} = a_n^3 + \frac{a_n}{2}, & \text{se } n \ge 1. \end{cases}$$

- a) Use indução finita para mostrar que os termos da sucessão verificam  $a_n \in [0, 1/4]$ , para todo o  $n \in \mathbb{N}_1$ .
- b) Mostre que  $(a_n)$  é uma sucessão decrescente.
- c) Justifique que  $(a_n)$  é convergente e calcule o seu limite.
- (3,5) III. Calcule, ou mostre que não existem em  $\overline{\mathbb{R}}$ , os seguintes limites de sucessões:

a) 
$$\lim \frac{n\sqrt{n-n^2}}{n^2+2}$$
, b)  $\lim \sqrt[n]{\frac{(e^n-1)n^2}{n^2+4}}$ , c)  $\lim \frac{(-1)^n \operatorname{sen}(n^3+1)}{1-\sqrt{n}}$ .

(6,0) **IV.** Seja  $\alpha \in \mathbb{R}$ . Define-se a função  $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$  por

$$f(x) = \begin{cases} \arctan\left(e^{1/x}\right), & \text{se } x > 0, \\ \alpha + \arctan\left(e^{1/x}\right), & \text{se } x < 0. \end{cases}$$

- a) Determine  $\alpha$  de maneira a f ser prolongável por continuidade ao ponto 0.
- b) Determine a derivada de f.
- c) Designe por q o prolongamento por continuidade de f a 0.
  - i) Calcule  $\lim_{x\to+\infty} g(x)$  e  $\lim_{x\to-\infty} g(x)$  se existirem.
  - ii) Determine o contradomínio de g.
- (2,0) V. Seja  $h : \mathbb{R} \to \mathbb{R}$  uma função diferenciável verificando h(0) = 0 e  $0 < h'(x) < 1 \quad \forall_{x \in \mathbb{R}}$  e considere a sucessão  $(x_n)_{n \in \mathbb{N}_1}$  dada por

$$\begin{cases} x_1 = 1, \\ x_{n+1} = h(x_n), \text{se } n \ge 1. \end{cases}$$

- a) Mostre que  $x_n > 0$  para todo o  $n \in \mathbb{N}_1$ .
- b) Mostre que  $(x_n)$  é uma sucessão decrescente.